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Linear stability of a cylindrical falling film 

By FRANCISCO J. SOLORIO AND MIHIR SEN? 
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(Received 11 June 1985 and in revised form 16 March 1987) 

The problem of a cylindrical falling film, descending vertically outside an infinitely 
long cylinder is considered. The linear stability of the fully developed flow is studied, 
first with a perturbation technique for small wavenumbers, and then by direct 
numerical computation. The numerical results are in agreement with other published 
values for the cylindrical jet and flat plate limits. The study shows that the 
cylindrical falling film is unstable for all Reynolds numbers, Weber numbers and 
radius ratios. Stability and amplification curves are calculated for different values of 
the parameters. With increasing curvature of the film the range of unstable 
wavenumbers and the wavenumber of the most amplified wave increase. For low 
curvature the wavenumber of the most amplified wave decreases with Reynolds 
number or Weber number, while for high curvatures it increases. 

1. Introduction 
The stability of gravity-driven flows with free surfaces is important to many 

industrial processes which include heat and mass exchange through the surface area. 
Most previous studies have been stability analyses of liquid falling fdms over an 
inclined flat plate, in which context a linearized perturbation technique for small 
wavenumbers was perfected. This includes work by Yih (1954, 1963), Benjamin 
(1957) and de Bruin (1974). A simple description of the theory is given in the book 
by Yih (1969). 

Several experimental observations of the instability of falling films have been 
carried out, for instance by Kapitza & Kapitza (1949), Binnie (1957) and more 
recently by Krantz & Goren (1971) and Pierson & Whitaker (1977). Some, though 
not all of these, were on falling films around long cylinders. The cylindrical falling 
film is of importance since many industrial and chemical devices use this type of 
geometry. In some applications the radius of curvature of the film is not very large 
with respect to the film thickness. In such cases important differences could arise 
between the cylindrical-film results and its flat-plate, approximation. 

Some work relating to the effect of curvature on flow stability has been reported. 
The classical analysis of a cylindrical water column was by Rayleigh (1879, 1892) 
with a modern extension given by Chandrasekhar (1961). Theoretical work on 
cylindrical films was started by Goren (1962) who studied the linear stability of 
external and internal films to axisymmetric disturbances. However, the study was 
severely limited by an assumption of zero velocity of the unperturbed flow, under 
which condition the flow was found to be unstable for small wavenumbers but stable 
for large ones. Lin & Lui (1975) obtained an evolution equation on which they based 
their analysis and which is valid only for small wavenumbers and thin films. For this 
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reason their results compare well with those of Kapitza & Kapitza (1949) and Binnie 
(1957), but not with Goren (1962). Atherton & Homsy (1976) analysed the problem 
but only to obtain the evolution equations for interfacial waves in two-phase flows, 
again valid only for small wavenumbers. However, no stability analysis of the steady 
state was carried out. Krantz & Zollars (1976) started from the Orr-Sommerfeld 
equation and obtained a series solution in terms of a small wavenumber. Their 
analysis is valid only for thin films and low Reynolds numbers. In  fact their graphs 
do not consider Reynolds numbers larger than 0.5 which may be important in 
practice. Homsy & Geyling (1977) studied a slightly different but related problem of 
a film around a cylinder moving in a vertical direction. But, like Goren (1962), 
negligible inertia was assumed along with small wavenumbers. More recently, Shlang 
& Sivashinsky (1982) have obtained an evolution equation using the approximation 
of strong surface tension. In contrast with previous work, they do not restrict 
themselves to a linearized analysis nor to axisymmetric flows. Their approach 
permits the modelling of certain aspects of chaos in the film. 

Thus, although some stability results exist for the cylindrical falling film, these 
have been under a variety of assumptions which have made theoretical analysis 
possible. There is a need for a comprehensive numerical analysis of the problem to 
unite together all previous work as special cases, including classical work on liquid 
jets and columns, and extend the results to parameter values previously unexplored. 
Numerical work, by its nature, does not have to make any kind of assumptions of the 
wavenumber, Reynolds number or film thickness. In fact on comparing the results 
with those from a small wavenumber analysis, it is found that the wavenumber has 
to be very small for good quantitative agreement and the results diverge quickly. 

2. Linear stability analysis 
We consider a gravity driven falling film outside a vertical cylinder of radius a, as 

shown in figure 1. Cylindrical coordinates will be used, with z being vertically 
downwards and r in the radial direction. The free surface of the liquid is at r = g, 
where C > a. Non-dimensional forms of the governing equations will be used with the 
characteristic velocity being that at the unperturbed free surface and the 
characteristic length being the unperturbed film thickness. With axisymmetry, the 
appropriate form of the Orr-Sommerfeld equation in terms of the complex 
perturbation stream-function amplitude $ is 

where 

i 
a R  

[(c-u,) (D2-a2)+D2u,]$ = - (D2-a2)2@, 

c is the complex wave speed, a is the real wavenumber and u,(T) is the unperturbed 
fluid velocity. The boundary conditions are 
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FIGURE 1. Geometry of cylindrical falling am. 
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u, = /3 (1+/3)2+ya 
y2-2lny-1 * 

In the previous equations the geometrical parameter 

(7) /3=-=- a Y 
g-a 1-y’ 

remesents the ratio of the inner radius to film thickness, where the bar over the 
L 

indicates its unperturbed value and y is given by 

y = a/[. 

The Reynolds number R is defined by 

V 
(9) 

where v is the kinematic viscosity and U is the unpertui ,el fluid velocity at the free 
surface. The Froude number and Weber number are given by 

F = U/(g(C-a))t  (10) 

T W =  
pu2 ( g -  a) ’ 
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respectively, where g is the acceleration due to gravity, p is the density and T is the 
surface tension coefficient. 

The three independent parameters for the problem are R, W and y (or 8). It can 
be seen that F is readily obtained from 

R/F'= G ,  (12) 

where G =  4(1 -rI2 
y2-21ny-1' 

The linear ordinary differential equation (1) and the boundary conditions (3), (4) 
and (5) constitute an eigenvalue problem for the complex parameter c. Positive, zero 
or negative imaginary parts of c indicate instability, neutral stability and linear 
stability respectively. 

2.1. Small wavenumber approximation 
To provide a quantitative basis of comparison for the numerical results, a small 
wavenumber approximation introduced by Yih (1963) for the flat-plate problem will 
first be used. We take 

@ = @o+a$l+a2@2+ ... , (14) 

and c = c,+acl+a2c2+ ... . (15) 

The zeroth-order equation to be solved is 

D", = 0,  

with the boundary conditions 

@ , = % = o  at r = B ,  

The first-order equation is 

with the boundary conditions 

(21) @ = - - 0  d@l- at r = B ,  
' dr 

d 2 ~ 1  ld@l+G(cl@O-@l) = 0 at r = l + B ,  
dr2 r dr (22) 

+ W ( l - y ) 2 @ . , = 0  at r = l + B .  (23) 
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Equations (16) and (20) can be easily solved. The eigenvalue c is determined by 
applying the boundary conditions. The algebra is laborious but straightforward. The 
result is given by 

where 
c = 2+iaRf(W,y), (24) 

f = @ [#( 1 + 2/3)2 (41 + 82/3+ 30p)  -+( 1 + 2/3+ 5$) (3 + 6/3+ 2$) 

f is always positive and becomes large near y = 0 and 1. It can be seen that the 
imaginary part of c (and hence the growth rate of the instability wave) depends 
linearly on R and W. To the order to which the analysis has been carried out, it can 
be said that the flow is unstable for any set of values of the governing parameters R, 
W and y. It should be remembered that the expansions (14) and (15) are valid only 
if the ci are at most of order unity. Thus the approximate solution loses validity near 
y = O a n d  1. 

3. Numerical technique 
In order to obtain detailed information with respect to the instability of the 

cylindrical falling film, numerical calculations of the eigenvalue problem constituted 
by equation (1) and conditions (3), (4) and (5) were carried out. The computation 
scheme was based on that suggested by Davey (1973) for parallel flows and was 
first tested by checking with his values. In the present case, however, working 
with relatively low Reynolds numbers is a distinct advantage since computations 
are much easier than, for example, in boundary-layer flows. Specifically, ortho- 
normalization of the solution vector is not necessary during integration. A 
straightforward shooting method can be used. 

We consider the solution vector to be 

The relation between Y = Y, at r = /3 and Y = % at r = 1 +/3 is defined to be of the 
form 

K = B Y , ,  (26) 

where B is the transfer matrix which depends only on c and not on the boundary 
conditions. For a given value of c, the Merential equation can be integrated 
from r = /3 to r = 1 +/3, using as Y, the orthonormal vectors [l, 0, 0, 0IT, [0,1,0, 0IT, 
[ O , O ,  1,OIT and [ O , O ,  0, 1IT in turn. A fourth-order Runge-Kutta scheme with 50 
integrations steps was used. The vectors q, obtained as a result of these calculations 
form the columns of B. 

The first two elements of Y, are zero from boundary conditions (3). The other two 
elements are unknown, along with all four of q. Six scalar equations can be obtained 
in these six unknowns, four on using (26) and two from the boundary conditions (4) 
and (5 ) .  A non-trivial solution exists only if the determinant of the system vanishes. 
The eigenvalue c such that this happens is found by successive interpolation. First 
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Muller’s method and then Lagrange interpolation were used. The former has a larger 
radius of convergence but is slower, while the latter has a smaller radius but is faster. 
Normal CPU time on Burroughs 8700 computer for each run was between 4 and 10 
seconds, depending on the proximity of the initial guess to the final solution. 

4. Numerical results 
An infinite but discrete set of eigenvalues can be obtained for a given set of 

parameters R, a, W and y .  Figure 2 (a, b) shows the real and imaginary parts, c, and 
ci respectively, of the eigenvalues for the low modes as a function of wavenumber for 
R = 1, W = 1 and y = 0.5. The modes are numbered in order of descending values of 
the imaginary part. It is seen that only the first mode has any positive imaginary 
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FIUURE 3. c, and c, for the most unstable mode for W = 1, y = 0.5 and a = 0.4. 

a Approximate 

0.4 2 + 0.305 857 i 
0.3 2 + 0.229 393 i 
0.2 2+0.152929 i 
0.1 2 + 0.076 464 i 
0.05 2 + 0.038 232 i 
0.01 2 + 0.007 646 i 
0.005 2 + O.OO3 823 i 

TABLE 1. Eigenvalue c for different a, 

Numerical 
1.706 106+0.118957 i 
1.802 386 + 0.128 855 i 
1.896292 + 0.115 599 i 
1.970564+0.070926 i 
1.992 367 + 0.037 505 i 
1.999700+0.007641 i 
1.999923+0.003823 i 

with R = 1, W = 1 and y = 0.5 

FIQURE 4. 

0.3 - 

0.2 
a, 

- 

100 ZOO 
lo R 

Wavenumber a, and wave speed c, of most amplified wave for y 

1 

Pierson & Whitaker (1977); ....., present work. 

0.3 - 

0.2 
a, 

- 

100 ZOO 
lo R 

Wavenumber a, and wave speed c, of most amplified wave for y 

1 

Pierson & Whitaker (1977); ....., present work. 
= 0.99. from 

part, making this the only mode that is unstable. All perturbations in the 
wavenumber range 0 < a < a, are amplified. The wavenumber of maximum growth, 
and hence the most unstable, is indicated by the extremum of c a t  a = a,. 

Figure 3 shows the real and imaginary parts of c for the most unstable mode at3 a 
function of the Reynolds number for W = 1, y = 0.6 and a = 0.4. The imaginary part 
is positive for all R for this particular value of a. ci is linear with R for small R as 
predicted by (24) but later drops off sharply. 

The value of the numerically computed eigenvalue can be compared to that 
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J am 
1 0.41 
2 0.45 
4 0.50 
8 0.53 

TABLE 2. Wavenumber of maximum amplification with y = 0.015, 
R = lo-* and for different J = WRa 

0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 5. Wavenumber of most amplified wave for R = lo-’ and W = 10’. -, theory and 0, 
experiments of Goren (1962) ; 0 ,  present work. 

Y 

obtained from the small wavenumber analysis. Table 1 shows the two sets of 
eigenvalues for different wavenumbers. There is some difference for moderately small 
wavenumbers, but the two get closer together as a becomes smaller with the 
approximate value being always higher. The present approximate analysis does not 
predict a, and a, nor provide the other eigenvalues. 

4.1. Comparison with published data 
As y + 1 from below, the cylindrical geometry tends to that of a vertical flat plate. 
With the present non-dimensionalization, computation for y = 1 is not possible due 
to singularities. However, the eigenvalues of the lowest mode tend to a constant as 
y+ 1. In this way flat-plate values can be obtained and comparison made with 
published results. For y = 0.99, calculated values of the critical wavenumber a, were 
about 5 %  higher than those found by Whitaker (1964), but coincide exactly with 
those of Sternling & Barr-David reported in that paper. For the same y ,  figure 4 
shows the wavenumber a, and wave speed c,, of the most amplified wave. It is in 
good agreement with the results of Pierson & Whitaker (1977), who have checked 
their values against those obtained theoretically and experimentally by other 
aut hors . 

In the other limit, as y+O, a cylindrical jet with a vanishingly thin solid core is 
obtained as a limit. Even in this limit, there are physical differences with respect to 
a cylindrical falling jet. The latter is strictly speaking always accelerating. The 
velocity profile is also different in a vanishingly small region due to different 
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0 5 10 15 0 0.1 0.2 0.3 0.4 0.5 

FIGURE 6. Comparison of neutral stability curves. -, present work; ---, from (a) Lin & Liu 
(1975) for W = 100 and (a) Krantz & Zollars (1976) for their parameter N ,  = 2. 

R R 

a 0.5 

0 
0.01 0.1 1 10 

R 
FIGURE 7. Wave amplification curves for W = 1 and y = 0.6. 
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1 10 100 

FIGURE 8. Neutral stability curves for W = 1. 
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FIGURE 9. (a) Wavenumber a, and ( b )  wave speed c, of most amplified wave for W = 1. 

boundary conditions. However, the stability characteristics seem to be similar and 
the results obtained here for y + 0 can be compared to those for a static water column 
for which considerable information exists. The analysis presented by Chandrasekhar 
(1961) does not make a high-viscosity approximation and is hence more general than 
that of Rayleigh (1879, 1892). Table 2 shows the wavenumber for maximum 
amplification with y = 0.015. We have taken W - t  00 and R-tO such that J = WR* 
is a constant ; the value of R was fixed at and W varied accordingly. The results 
for different J are close to the values given in Chandrasekhar (1961) for a static 
column. They compare favourably also with the values obtained from 

0.707 
a, = 

[l+(&Y]:' 

proposed by Weber (1931). 
Detailed comparison for all values of y can also be made with the calculations of 

Goren (1962). His assumptions correspond to a value of R = 0, so we have taken 
R = lo-" and W = lon. Figure 5 shows the wavenumber of the most amplified wave 
a, as a function of y .  Once again the agreement is good. Also indicated are 
experimental data reported in that paper converted to the present notation. 
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FIGURE 10. (a) Wavenumber a, and (a) wave speed c, of most amplified wave for R = 1. 

Figure 6 (a,  b) shows the difference between the neutral stability curves calculated 
by the approximation of Lin & Liu (1975) and Krantz & Zollars (1976) respectively, 
compared to the present numerical method. The differences are accentuated as the 
Reynolds number and hence critical wavenumber increase. The latter also increases 
with the relative thickness of the film, i.e. for vanishing p. For large /I, as in the 
experiments of Binnie (1957) where f l =  118.64 and W = 597, the difference 
practically disappears. 

4.2. Cylindrical-film numerical results 
For highly curved cylinders with thick films and for large Reynolds numbers, the 
approximate theories do not give satisfactory results and numerical methods have to 
be applied. Figure 7 shows the constant amplification curves for W = 1 and y = 0.5. 
For moderately large R, all wavenumbers under 0.8 are amplified. As R+O, the 
critical wavenumber goes to zero very quickly. The amplification rate increases with 
R. Figure 8 shows the critical wavenumber as a function of R. For small R the critical 
wavenumber is practically a constant but increases with the curvature of the film. 
Figure 9 (a, b) shows the wavenumber and wave speed of the most amplified wave as 
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1 lo 

am Ci 

0.1 1 10 10' 10' 10' 
W 

FIQURE 11. Wavenumber am and amplification rate a, c, of most amplified wave for R = 1 and 
y = 0.5. 

a function of Reynolds number with W = 1. a, increases on increasing film 
curvature. Thus, for the same liquid surface velocity and film thickness around a 
cylinder and over a flat plate, smaller wavelength instabilities would appear on the 
cylindrical film. A change in Reynolds number produces an ambiguous effect, if the 
other parameters are kept constant. Figure 9(a)  shows that increasing R signifies an 
increase or decrease in the wavenumber of the most amplified wave depending on 
whether y is < or > about 0.25. 

In Figure 10(a, b), the most unstable wave is analysed as a function of y. The effect 
of surface tension here is curious. For y less than about 0.25, increasing Weber 
numbers increases its wavenumber while for larger y ,  the effect is the opposite. 
However, as W + 00, a, tends to an asymptotic value a: as indicated in figure 11. 
It decreases first since y > 0.25. a: varies little with R, but strongly with y. The rate 
of amplification a,c, is also shown in the figure. 

5. Conclusions 
The linear stability of the cylindrical falling film has been previously studied using 

analytical techniques and with various approximations which restrict the usefulness 
of the results obtained. The present numerical method confirms the fact that the film 
is unstable to perturbations with wavenumbers ranging from zero to a critical value 
for all Reynolds numbers, Weber numbers and radius ratios. However, quantitative 
values of the critical wavenumbers and amplification rates can be significantly 
different from that predicted by an approximate theory. This is important for any 
experimental verification. Qualitatively, growth rates are not linear with Reynolds 
numbers nor with Weber numbers as predicted by a first-order theory. With 
increasing curvature of the film the range of unstable wavenumbers and the 
wavenumber of the most amplified wave increase. For low y the wavenumber of the 
most amplified wave increases with Reynolds numbers or Weber numbers while for 
high y it decreases. 
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